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Abstract

The study of the effect of round-off in Horner's scheme
leads to the problem of estimating the absolute values of
the so-called Horner sums. In this report the probiem is
solved under the condition that the polynomial is either
an odd or an even function and thaﬁ its maximum -norm does
not exceed the value one, Except for a few specifi~ cases,
the Chebyshev-polynomials then turn out to be the maximizing

polynomials.

R

a 2 4 &) 8 TE = .



1)

Bounds for Horner Sums

by

2)

Manfred Reimer

1. Introduction

In an earlier papér, Reimer and Zeller [1] proved the fol-

lowing maximum property for the Chebyshev-polynomials Cn:

Consider all real polynomials

(l.) P(x) = aO + al X + —-—+ a_ <
satisfying
(1.2) Il = max |P(x)| =1
-1<x<1
" and
(1.3) pis {S797} 1f n is {S357)

Among these polynomials, Cn is a polynomial maximizing the absolute

value of each partial sum
= - < i< '

(1.4) Si(P) aj +a; +--+ a; (o < i< n)
or, equivalently, the polynomial

a +a, X +———+ a, X

o 1 i
has a maximal Chebyshev-norm if P = Cn.

The study of the effect of round-off-errors in Horner's scheme

leads to the problem of estimating the absolute values of the
Horner sums

(1.5) Hi(P) = a; +a, , +t---+ ay (1 <i<n).

If P satisfies the condition (1.3),a crude partial solution for

this problem can be obtained as follows (see [2]): The trivial

1) Computer Science Center, University of Maryland.
2) The completion of this work was in part supported by the
National Aeronautics and Space Administration under grant

NsG - 398.



-2 -

relation

‘(1.6) §;1(® + H (P) = P(1) (1 < i< n)
implies that

(1.7) B, <1+ s, ;)] <1+ s, ;)]

Hence, since the Si—l(cn) have alternating signs, the estimate
<

(1.8) |1, (®) | < |B ()]

is evidently best possible in half of all the cases. We shall

prove here that there are only few exceptions for which (1.8) is

not valid.
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2. Lemmas

Let K.be a positive integer, r one of thelnumbers 0 and 1, and
n=2k +r, |

If P is a real polynomial of degree n satisfying (1.3)

then necessarily

(2.1) P(x) = x" p(x),

where p is a polynomial of degree k. 1In particular therefore

(2.1.1) c (x) = ¥ clx)).

We introduce the polynomials

(2.2) u (%) = % (x-1) (v =0,1,...,%)

as a basis for the space of all polynomials of degree k.

Thén X
2k+rx
(2.3) c= 2: <2v+r>uv'
=0

and as shown in [2]. the condition (1.2)

2k+r
2, < Goix)

implies that

1

where p is assumed to have the representation

(2.4) P =§ Avu\)'
v=0

However, (1.2) involves one more restriction on the Av

TL.emma 1.

Let.Ak = 1 and assume that the polynomial (2.4) has k zeros in

the interval (0,1). Then each A, (0 < v <k-1) is a nonnegative

and strictly increasing function of each of the zeros within this

interval.

Proof. Consider the mapping

(2.4) : zZ =




If xl, x2,...,xk are the zeros of p in (0, 1) and zl, zz,...,zk

their images under 2z, then

k X v X
(z-1) " p(x(2)) =z Az =ﬂ— (z-z ),
v v
v=(0 v=l

-~-o< 2z <0 (v=1, 2,...,k).
- v
Since z is on (0, 1) a strictly decreasing function of x, the

statement of Lemma 1 is now evident.

Lemma 2.

Let x and Yv (v ="1,...,k) denote the zeros of the non-zero
Vv

polynomials

k k
P = z; AyYy and q = E: B4y
v=0 v=0

and suppose these zeros have been arranged as follows:

(2.5.1) 0 < Yy < Yy g <--<yl <1,

|

< —
(2.5.2) yk < xk < yk—l < xl < 1.
Then
(2.6) AN >Biso (w=o0, 1,...,k-1).

Ao By

Proof. X + 1, 'S + 1 implies that A, i o, B, + 0 and therefore
(2.6) follows directly from Lemma 1.
We shall now specialize the Yv of Lemma 2 to

5 .
_ Y _ )
(2.7) y, = cos (v 0, 1,...,k):

then (2.5.1) holds. 1In this case, the polynomial q of Lemma 2
can be defined as follows:

Case l. r = Q. Since yl,..., Y are extreme points of c(x)

k-1
and since Y, = 0, we are led to the relation

a(x) = }—%-mc'(x) .



]

Together with (2.2), (2.3) this results in

(2.8.1) q(x)=§ e ) u 0.

v=1
Case 2. r = 1l. 1In this case, yl,...,yk are contained in (0, 1)

and are extreme points of the function

cn(¢"§) = .Jx . c(x).

Thus

100 = g R ¢ Gr WE - o) = giog (e + 2x el

is a polynomial of degree k with Yyreeery, as its zeros.

Using again (2,.2), (2.3) we obtain therefore

(2.8.2) q(x) =§. <§t+¥> uv(x).
v=0

3. The Main Theorem

Let P be a polynomial of the form (l.i) s«.isfying the conditions

(1.2) and (l.3)iand let p be defined by (2.1). Obviously, we

y

have then

s.(p) =s,. _(P),
(3.1) * 2itr (i =0, 1,...,%)

Hy (P) = Hy, ()

and it can be verified easily that

s (u) =0 (0<i<v<k),
\Y]

k+1i

(-1) Si(uv)

(3.2)

IV
H

(0 < v<i<Kk).

For the moment let us suppose that

(1.2.1) | p | < 1.

Then each of the polynomials Cn + P and Cn - P has a zero between
each pair of successive extreme points of Cn. Passing over to c

and p we see that each of the polynomials c+p and c-p satisfies




»

the conditions placed upon p in Lemma 2 provided that q is
defined by (2.8.1) and (2.8.2), respectively. This remains

true even if we replace (1.2.1) by the original condition (1.2)

- provided we add the assumption that

(3.3) P(1) ¢ + 1.
Let
k
W=ZAu
vV Vv
v=0

be one of the polynomials c+p and c-p; then
Ak = w(l) =1+ p(1) > 0.
From (1.6) and (3.2) it follows that

L ) i-=-1
(3.9 (-0 @ = (DA + Y A s,

io1 (uv)l (1 <i<k).

v=0
Using Ak > 0, (3.2) and (2.8.1) or (2.8.2), whatever the case may

be, together with Lemma 2 we obtain from .(3.4) the estimate

N W B0 BN B0 B WD SN SN SN BN G5 BN GBS G0 68 SN am

r

o » ) . i=1
S~ = Ly KFL . 7 ZR¥L
(3.5) (-1) " TH, (W) = Ay {( 1) +Jéo 2k+r\2v+r—l>} S

Suppose now that one of the following conditions holds:
(3.6.1) 1<ic<k, i k mod 2;
(3.6.2) 2<ic<k, i#$kmod 2.

Then, for both of the two possible choices of w, the right-hand-

side of (3.5) is nonnegative and it follows that

(8, (@)% - [8,@]° = 8, (c+p) . B, (c-p) B0

where the equality sign occurs at best when
(3.7) i=2,k=1mod 2, r = 0.

Because of (3.1) this finally leads to the estimate

<. ,
(3.8) |, Y& |8, ().
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Let us now drop the conditon (3.3), i.e. let us assume that

P(l) =+ 1
(for the following we select a fixed sign). By continuity (3.6)
then remains valid and more precisely .

(3.9) (-1, (ctp) G0

holds under the same conditons as above. However, if

w = c ¥ p then Ak = 0. Assume that
P ¢ C,r P #_—cn:
then it is a well-known fact (Markoff's inequality) that
' < ]
lpr @] <c: .

This implies that x = 1 is a simple root of Cn;P and likew e

of c;p. However, we have

Ak—l =w'(l) >0

and w satisfied the condition (2.5.2) for p in Lemma 2 if'
equality is permitted also in the rightmost inequality. Conse~-

quently zero is at best a simple root. Using again mapping (2.4) .
k=1

TS Gy M SN N I BN GBI G BN NN NS N B GO G G BN oW

[

and applying Descartes' ruale to AO + Alz f,dAk_l z we find
that
A >O,A >0 -(\)=lt 21»--1 k"'l)
o - v
and hence (3.4) implies that
(3.10) (0 (e Fp) >0 (2<i<Kk).

Therefore (3.8) is obtained from'(3.9), (3.10) and again without
the equality sign in the case

(3.11) 2<i<k;if$2ifr=0andk=1mod 2; P ¢ + c_-
Finally we observe the self-evident fact that (3.8) is valid for
(3.6.3) « i=0,%k>1..

Moreovér, the cases covered by (3.6.1), (3.6.2) and (3.6.3) are

obviously exactly those excluded by the condition




E: i=1l; r=0o0rl; k=2, 4, 6,=—-

Altogether we have therefore obtaihed the following result:

Theorem.
Let P(x) =a x' + a X2 + a s
n n-2 ‘n-4

be a real polynomial satisfying

HPH = max !P(x)l < 1.

-l<x<1
n n-2 n-4

C X = ——
Let n (%) @ X a,_, X to X +
ke the Chebyshev-polynomial of degree n. Then

- <
.12 + a - 3| . _—

(3.12) | a +a o+ -+ a | ] A N

is valid for
0<v<n v =nmd?2
except in the following cases

E v=2; n=4, 8, 12,~---,
(o]

El : v =3y n=25, 9, 13, -~

 En s GE W G G OGN BN S0 NN AN UGN SN ED GB SR S0 e

If in (3.12) equality Folds and if one of the following conditions

is satisfied

v>6; n=6, 10, 14,---,
(3.13) v>4; n=4, 8, 12,---,

v>5;n=5,7, 9,---
then |

PziCn.

Proof. The statements Qf the theorem are self-evident in the

casen =0 andn=1. Ifn>2 set v = 2i + r and recall the

meaning of H (P). The exceptions EO and E. correspond to E for
v

1
r =0 and r = 1, respectively, and (3.12) is identical to (3.8)

Finally, (3.13).is a decomposed version of (3.11). Thus the

theorem has been proved in its entirety.

Note that the result does not apply in the exceptional cases




EO and El’ In fact, the example

P(x) = C6(X) - K-x- Cé(x)

shows that when (3.13) is violated the equality in (3.12) does
not imply that P = + Cn'

"In this case the assumptions about P made in the theorem are

satisified for some interwval

0 < K<K.
= 0"
Yet, because of

6 -~
x‘Cé (x) = 192 x - l92-x4 + 36 xé,

we have
Hy (P) = 5, (Cg)
for any choice of K.

4., Exceptional Cases.

We shall now discuss the situation when one of the conditions

E_and E, applies.
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Eo' Because of
HZ(P) = P(l) - P(0)
(1.2) implies that

(4.1) '\Hz(p)l < 2 (n = 4, 8, 12,---).
The example P = C2 then demonstrates that the bound in (4.1l) is
best possible. However, since Cn(l) = Cn(O), this bound is not

attained for P = Cn.

El' Assume for the moment that
(4.2) lpll < 1.

Since C (A) attains each value between -1 and +1 within the

interval

(4.3) cos % <A<,

we can choose an 8 in this interval such that

P(l) = 'cn(s).
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Then cn(sx) -'P(x) is an odd polynomial with exactly k positive
roots between 1 and the smallest positive extreme point of Cn(sx).

This implies that

p' (0) < [%;-cn(sx)]xzo = sc (0,

because otherwise an additional zero of Cn(sx) - P(x) could be
found in (0, 1). Thus
' - < ! - .
P' (0) P(1) s Cn (0) Cn(s)

Since -P satisfies the same conditions as P there is another
number t in the interval (4.3) with

_, I ,
-P'(0) + P(l) < t Cn(O) - Cﬁ(t).
Now
P(1l) - P'(0) = a, + a5 i a = H3(p),

and thus

G SIS G0 G GED GED NN GE GhD G0 BN GIN BN N0 M0 BN B BN om

.|H3(p)\ < max |\ cr(o) - ¢ (\]

il
cos;iksl

holds, even if we admit (1.2) instead of the condition (4.2). The

maximum on the right can be determined by elementary means; it is

i
assumed only at A = cos_. Therefore

(4.4) |H,(®)| <1 +ncos; (n=5,09, 13,---),
and the bound is attained by

P(x) = % c_ (%o cos%).
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